FakeQuantWithMinMaxArgs
tensorflow C++ API
tensorflow::ops::FakeQuantWithMinMaxArgs
Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type.
Summary
Attributes [min; max] define the clamping range for the 'inputs' data. Op divides this range into 255 steps (total of 256 values), then replaces each 'inputs' value with the closest of the quantized step values. 'num_bits' is the bitwidth of the quantization; between 2 and 8, inclusive.
Quantization is called fake since the output is still in floating point.
Arguments:
- scope: A Scope object
Returns:
Output
: The outputs tensor.
FakeQuantWithMinMaxArgs block
Source link :https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_array_ops.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input
inputs
: A Tensor of typefloat
. - Attr
attrs
: An optional attribute value- min : An optional float. Defaults to -6.
- max : An optional float. Defaults to 6.
- num_bits : An optional int. Defaults to 8.
Attrs use ex)
Output:
- output : Output object of FakeQuantWithMinMaxArgs class object.
Result:
- std::vector(Tensor) result_output : A
Tensor
of typefloat
.