FakeQuantWithMinMaxVarsGradient
tensorflow C++ API
tensorflow::ops::FakeQuantWithMinMaxVarsGradient
Compute gradients for a FakeQuantWithMinMaxVars operation.
Summary
Arguments:
- scope: A Scope object
- gradients: Backpropagated gradients above the FakeQuantWithMinMaxVars operation.
- inputs: Values passed as inputs to the FakeQuantWithMinMaxVars operation. min, max: Quantization interval, scalar floats.
Optional attributes (seeAttrs):
- num_bits: The bitwidth of the quantization; between 2 and 8, inclusive.
Returns:
Outputbackprops_wrt_input: Backpropagated gradients w.r.t. inputs:gradients * (inputs >= min && inputs <= max).Outputbackprop_wrt_min: Backpropagated gradients w.r.t. min parameter:sum(gradients * (inputs < min)).Outputbackprop_wrt_max: Backpropagated gradients w.r.t. max parameter:sum(gradients * (inputs > max)).
FakeQuantWithMinMaxVarsGradient block
Source link :https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_array_ops.cpp

Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input
inputs: A Tensor of typefloat. - Input min : A Tensor of type
float. - Input max : A Tensor of type
float. - Attr
attrs: An optional attribute value- num_bits : An optional int. Defaults to 8.
Attrs use ex)
Output:
- output : Output object of FakeQuantWithMinMaxVarsGradient class object.
Result:
- std::vector(Tensor)
backprops_wrt_input: ATensorof typefloat32. Backpropagated gradients w.r.t. inputs:gradients * inputs >= min && inputs <= max). - std::vector(Tensor)
backprop_wrt_min: ATensorof typefloat32. Backpropagated gradients w.r.t. min parameter:sum(gradients * (inputs < min)). - std::vector(Tensor)
backprop_wrt_max: ATensorof typefloat32. Backpropagated gradients w.r.t. max parameter:sum(gradients * (inputs > max)).
Using Method
