SparseSoftmaxCrossEntropyWithLogits
tensorflow C++ API
tensorflow::ops::SparseSoftmaxCrossEntropyWithLogits
Computes softmax cross entropy cost and gradients to backpropagate.
Summary
UnlikeSoftmaxCrossEntropyWithLogits
, this operation does not accept a matrix of label probabilities, but rather a single label per row of features. This label is considered to have probability 1.0 for the given row.
Inputs are the logits, not probabilities.
Arguments:
- scope: A Scope object
- features: batch_size x num_classes matrix
- labels: batch_size vector with values in [0, num_classes). This is the label for the given minibatch entry.
Returns:
Output
loss: Per example loss (batch_size vector).Output
backprop: backpropagated gradients (batch_size x num_classes matrix).
SparseSoftmaxCrossEntropyWithLogits block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_nn.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input features: connect Input node.
- Input labels: connect Input node.
Return:
- Output loss: Output object of SparseSoftmaxCrossEntropyWithLogits class object.
- Output backprop: Output object of SparseSoftmaxCrossEntropyWithLogits class object.
Result:
- std::vector(Tensor) result_loss: Returned object of executed result by calling session.
- std::vector(Tensor) result_backprop: Returned object of executed result by calling session.