FakeQuantWithMinMaxVars
tensorflow C++ API
tensorflow::ops::FakeQuantWithMinMaxVars
Fake-quantize the 'inputs' tensor of type float via global float scalars min
Summary
andmax
to 'outputs' tensor of same shape asinputs
.
[min; max] is the clamping range for the 'inputs' data. Op divides this range into 255 steps (total of 256 values), then replaces each 'inputs' value with the closest of the quantized step values. 'num_bits' is the bitwidth of the quantization; between 2 and 8, inclusive.
This operation has a gradient and thus allows for trainingmin
andmax
values.
Arguments:
- scope: A Scope object
Returns:
Output
: The outputs tensor.
FakeQuantWithMinMaxVars block
Source link :https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_array_ops.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input
inputs
: A Tensor of typefloat
. - Input min : A Tensor of type
float
. - Input max : A Tensor of type
float
. - Attr
attrs
: An optional attribute value- num_bits : An optional int. Defaults to 8.
Attrs use ex)
Output:
- output : Output object of FakeQuantWithMinMaxVars class object.
Result:
- std::vector(Tensor) result_output : A
Tensor
of typefloat