DeserializeManySparse
tensorflow C++ API
tensorflow::ops::DeserializeManySparse
Deserialize and concatenate SparseTensors from a serialized minibatch.
Summary
The input serialized_sparse must be a string matrix of shape [N x 3] where N is the minibatch size and the rows correspond to packed outputs of SerializeSparse. The ranks of the original SparseTensor objects must all match. When the final SparseTensor is created, it has rank one higher than the ranks of the incoming SparseTensor objects (they have been concatenated along a new row dimension).
The output SparseTensor object's shape values for all dimensions but the first are the max across the input SparseTensor objects' shape values for the corresponding dimensions. Its first shape value is N, the minibatch size.
The input SparseTensor objects' indices are assumed ordered in standard lexicographic order. If this is not the case, after this step run SparseReorder to restore index ordering.
For example, if the serialized input is a [2 x 3] matrix representing two original SparseTensor objects:
index =[0]
[10]
[20]
values =[1,2,3]
shape =[50]
and
index =[2]
[10]
values =[4,5]
shape =[30]
then the final deserialized SparseTensor will be:
index =[0 0]
[0 10]
[0 20]
[1 2]
[1 10]
values =[1,2,3,4,5]
shape =[2 50]
Arguments:
- scope: A Scope object
- serialized_sparse: 2-D, The
NserializedSparseTensorobjects. Must have 3 columns. - dtype: The
dtypeof the serializedSparseTensorobjects.
Returns:
DeserializeManySparse block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_sparse.cpp

Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input serialized_sparse: connect Input node.
- DataType dtype: input DataType in value.
Return:
- Output sparse_indices: Output object of DeserializeManySparse class object.
- Output sparse_values: Output object of DeserializeManySparse class object.
- Output sparse_shape: Output object of DeserializeManySparse class object.
Result:
- std::vector(Tensor) product_result : Returned object of executed result by calling session.
Using Method
