SparseSlice
tensorflow C++ API
Slice aSparseTensor
based on thestart
andsize
.
Summary
For example, if the input is
input_tensor = shape =[2,7]
[ a d e ]
[b c ]
Graphically the output tensors are:
sparse_slice([0,0],[2,4])= shape =[2,4]
[ a ]
[b c ]
sparse_slice([0,4],[2,3])= shape =[2,3]
[ d e ]
[ ]
Arguments:
- scope: A Scope object
- indices: 2-D tensor represents the indices of the sparse tensor.
- values: 1-D tensor represents the values of the sparse tensor.
- shape: 1-D. tensor represents the shape of the sparse tensor.
- start: 1-D. tensor represents the start of the slice.
- size: 1-D. tensor represents the size of the slice. output indices: A list of 1-D tensors represents the indices of the output sparse tensors.
Returns:
Output
output_indicesOutput
output_values: A list of 1-D tensors represents the values of the output sparse tensors.Output
output_shape: A list of 1-D tensors represents the shape of the output sparse tensors.
SparseSlice block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_sparse.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input indices: connect Input node.
- Input values: connect Input node.
- Input shape: connect Input node.
- Input start: connect Input node.
- Input size: connect Input node.
Return:
- Output output_indices: Output object of SparseSlice class object.
- Output output_values: Output object of SparseSlice class object.
- Output output_shape: Output object of SparseSlice class object.
Result:
- std::vector(Tensor) result_output_indices : Returned object of executed result by calling session.
- std::vector(Tensor) result_output_values : Returned object of executed result by calling session.
- std::vector(Tensor) result_output_shape : Returned object of executed result by calling session.