Conv3DBackpropInputV2


tensorflow C++ API

tensorflow::ops::Conv3DBackpropInputV2

Computes the gradients of 3-D convolution with respect to the input.


Summary

Arguments:

  • scope: A Scope object
  • input_sizes: An integer vector representing the tensor shape ofinput, whereinputis a 5-D[batch, depth, rows, cols, in_channels]tensor.
  • filter:Shape[depth, rows, cols, in_channels, out_channels].in_channelsmust match betweeninputandfilter.
  • out_backprop: Backprop signal of shape[batch, out_depth, out_rows, out_cols, out_channels].
  • strides: 1-D tensor of length 5. The stride of the sliding window for each dimension ofinput. Must have strides[0] = strides[4] = 1.
  • padding: The type of padding algorithm to use.

Optional attributes (seeAttrs):

  • data_format: The data format of the input and output data. With the default format "NDHWC", the data is stored in the order of: [batch, in_depth, in_height, in_width, in_channels]. Alternatively, the format could be "NCDHW", the data storage order is: [batch, in_channels, in_depth, in_height, in_width].

Returns:


Conv3DBackpropInputV2 block

Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_nn.cpp

Argument:

  • Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
  • Input input_sizes: connect Input node.
  • Input filter: connect Input node.
  • Input out_backprop: connect Input node.
  • gtl::ArraySlice< int > strides: Input strides in value ex)1,2,2,1,1
  • StringPiece padding: Input paddingin value ex)SAME
  • Conv3DBackpropInputV2::Attrs attrs : Input attrs in value. ex) data_format_ = NDHWC;

Return:

  • Output output : Output object of Conv3DBackpropInputV2 class object.

Result:

  • std::vector(Tensor) result_output : Returned object of executed result by calling session.

Using Method

results matching ""

    No results matching ""