DynamicStitch
tensorflow C++ API
tensorflow::ops::DynamicStitch
Interleave the values from thedata
tensors into a single tensor.
Summary
Builds a merged tensor such that
```python merged[indices[m][i, ..., j], ...] = data[m][i, ..., j, ...] ```
For example, if eachindices[m]
is scalar or vector, we have
```python Scalar indices:
merged[indices[m], ...] = data[m][...]
Vector indices:
merged[indices[m][i], ...] = data[m][i, ...] ```
Eachdata[i].shape
must start with the correspondingindices[i].shape
, and the rest ofdata[i].shape
must be constant w.r.t.i
. That is, we must havedata[i].shape = indices[i].shape + constant
. In terms of thisconstant
, the output shape is
merged.shape =[max(indices)]+ constant
Values are merged in order, so if an index appears in bothindices[m][i]
andindices[n][j]
for(m,i) < (n,j)
the slicedata[n][j]
will appear in the merged result.
For example:
```python indices[0] = 6 indices[1] = [4, 1] indices[2] = [[5, 2], [0, 3]] data[0] = [61, 62] data[1] = [[41, 42], [11, 12]] data[2] = [[[51, 52], [21, 22]], [[1, 2], [31, 32]]] merged = [[1, 2], [11, 12], [21, 22], [31, 32], [41, 42], [51, 52], [61, 62]] ```
This method can be used to merge partitions created bydynamic_partition
as illustrated on the following example:
```python Apply function (increments x_i) on elements for which a certain condition
apply (x_i != -1 in this example).
x=tf.constant([0.1, -1., 5.2, 4.3, -1., 7.4]) condition_mask=tf.not_equal(x,tf.constant(-1.)) partitioned_data = tf.dynamic_partition( x, tf.cast(condition_mask, tf.int32) , 2) partitioned_data[1] = partitioned_data[1] + 1.0 condition_indices = tf.dynamic_partition( tf.range(tf.shape(x)[0]), tf.cast(condition_mask, tf.int32) , 2) x = tf.dynamic_stitch(condition_indices, partitioned_data) Here x=[1.1, -1., 6.2, 5.3, -1, 8.4], the -1. values remain
unchanged.
```
Arguments:
- scope: A Scope object
Returns:
- Output : The merged tensor.
Constructor
- DynamicStitch(const ::tensorflow::Scope & scope, ::tensorflow::InputList indices, ::tensorflow::InputList data).
Public attributes
- tensorflow::Output merged
DynamicStitch block
Source link : https://github.com/EXPNUNI/enuSpace-Tensorflow/blob/master/enuSpaceTensorflow/tf_data_flow_ops.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- indices : connect Input node or input data.
- data: connect Input node.
Return:
- Output merged: Output object of DynamicStitch class object.
Result:
- std::vector(Tensor) product_result : Returned object of executed result by calling session.