ApplyAdagrad


tensorflow C++ API

tensorflow::ops::ApplyAdagrad

Update '*var' according to the adagrad scheme.


Summary

accum += grad * grad var -= lr * grad * (1 / sqrt(accum))

Arguments:

  • scope: A Scope object
  • var: Should be from a Variable().
  • accum: Should be from a Variable().
  • lr: Scaling factor. Must be a scalar.
  • grad: The gradient.

Optional attributes (seeAttrs):

  • use_locking: If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:


ApplyAdagrad block

Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_training.cpp

Argument:

  • Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
  • Input var: connect Input node.
  • Input accum: connect Input node.
  • Input lr: connect Input node.
  • Input grad: connect Input node.
  • ApplyAdagrad ::Attrs attrs : Input attrs in value. ex) use_locking_ = false;

Return:

  • Output output : Output object of ApplyAdagrad class object.

Result:

  • std::vector(Tensor) result_output : Returned object of executed result by calling session.

Using Method

results matching ""

    No results matching ""