ScatterAdd


tensorflow C++ API

tensorflow::ops::ScatterAdd

Adds sparse updates to a variable reference.


Summary

This operation computes

# Scalar indices
ref[indices,...]+= updates[...]

# Vector indices (for each i)
ref[indices[i],...]+=updates[i,...]

# High rank indices (for each i, ..., j)
ref[indices[i,...,j],...]+=updates[i,...,j,...]

This operation outputs ref after the update is done. This makes it easier to chain operations that need to use the reset value.

Duplicate entries are handled correctly: if multiple indices reference the same location, their contributions add.

Requires updates.shape = indices.shape + ref.shape[1:].

Arguments:

  • scope: A Scope object
  • ref: Should be from a Variable node.
  • indices: A tensor of indices into the first dimension of ref.
  • updates: A tensor of updated values to add to ref.

Optional attributes (see Attrs):

  • use_locking: If True, the addition will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

  • Output: = Same as ref. Returned as a convenience for operations that want to use the updated values after the update is done.

ScatterAdd block

Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_state.cpp

Argument:

  • Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
  • Input ref: connect Input node.
  • Input indices: connect Input node.
  • Input updates: connect Input node.
  • ScatterAdd erMul ::Attrs attrs : Input attrs in value. ex)use_locking_ = true;

Return:

  • Output output : Output object of ScatterAdd class object.

Result:

  • std::vector(Tensor) product_result : Returned object of executed result by calling session.

Using Method

*Assign에 연결된 ClientSession은 Assign값을 확인하기 위해 작성된 temp입니다. ClientSession은 처리순서가 있으므로 테스트시 생성을 마지막에 작성하여 사용합니다.

results matching ""

    No results matching ""