QuantizedAvgPool


tensorflow C++ API

tensorflow::ops::QuantizedAvgPool

Produces the average pool of the input tensor for quantized types.


Summary

Arguments:

  • scope: A Scope object
  • input: 4-D with shape[batch, height, width, channels].
  • min_input: The float value that the lowest quantized input value represents.
  • max_input: The float value that the highest quantized input value represents.
  • ksize: The size of the window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.
  • strides: The stride of the sliding window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.
  • padding: The type of padding algorithm to use.

Returns:

  • Outputoutput
  • Outputmin_output: The float value that the lowest quantized output value represents.
  • Outputmax_output: The float value that the highest quantized output value represents.

QuantizedAvgPool block

Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_nn.cpp

Argument:

  • Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
  • Input input: connect Input node.
  • Input min_input: connect Input node.
  • Input max_input: connect Input node.
  • ArraySlice< int> ksize: input ksize in values. ex)1,2,2,2,1
  • ArraySlice< int> strides: input ksize in values. ex)1,4,3,2,1
  • stringpiece padding: input padding in value. ex)SAME

Return:

  • Output output: Output object of QuantizedAvgPool class object.
  • Output min_output: Output object of QuantizedAvgPool class object.
  • Output max_output: Output object of QuantizedAvgPool class object.

Result:

  • std::vector(Tensor) result_output : Returned object of executed result by calling session.
  • std::vector(Tensor) result_min_output : Returned object of executed result by calling session.
  • std::vector(Tensor) result_max_output : Returned object of executed result by calling session.

Using Method

results matching ""

    No results matching ""