QuantizedAvgPool
tensorflow C++ API
tensorflow::ops::QuantizedAvgPool
Produces the average pool of the input tensor for quantized types.
Summary
Arguments:
- scope: A Scope object
- input: 4-D with shape
[batch, height, width, channels]
. - min_input: The float value that the lowest quantized input value represents.
- max_input: The float value that the highest quantized input value represents.
- ksize: The size of the window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.
- strides: The stride of the sliding window for each dimension of the input tensor. The length must be 4 to match the number of dimensions of the input.
- padding: The type of padding algorithm to use.
Returns:
Output
outputOutput
min_output: The float value that the lowest quantized output value represents.Output
max_output: The float value that the highest quantized output value represents.
QuantizedAvgPool block
Source link : https://github.com/EXPNUNI/enuSpaceTensorflow/blob/master/enuSpaceTensorflow/tf_nn.cpp
Argument:
- Scope scope : A Scope object (A scope is generated automatically each page. A scope is not connected.)
- Input input: connect Input node.
- Input min_input: connect Input node.
- Input max_input: connect Input node.
- ArraySlice< int> ksize: input ksize in values. ex)1,2,2,2,1
- ArraySlice< int> strides: input ksize in values. ex)1,4,3,2,1
- stringpiece padding: input padding in value. ex)SAME
Return:
- Output output: Output object of QuantizedAvgPool class object.
- Output min_output: Output object of QuantizedAvgPool class object.
- Output max_output: Output object of QuantizedAvgPool class object.
Result:
- std::vector(Tensor) result_output : Returned object of executed result by calling session.
- std::vector(Tensor) result_min_output : Returned object of executed result by calling session.
- std::vector(Tensor) result_max_output : Returned object of executed result by calling session.